2 9 N ov 2 00 6 A COMBINATORIAL FORMULA FOR NON - SYMMETRIC MACDONALD POLYNOMIALS
نویسندگان
چکیده
We give a combinatorial formula for the non-symmetric Macdonald polynomials E µ (x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials J µ (x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the non-symmetric Macdonald polynomials.
منابع مشابه
2 8 Ja n 20 06 A COMBINATORIAL FORMULA FOR NON - SYMMETRIC MACDONALD POLYNOMIALS
We give a combinatorial formula for the non-symmetric Macdonald polynomials E µ (x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials J µ (x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop, that characterizes the non-symmetric Macdonald polynomials.
متن کامل1 2 Fe b 20 07 A COMBINATORIAL FORMULA FOR NON - SYMMETRIC MACDONALD POLYNOMIALS
We give a combinatorial formula for the non-symmetric Macdonald polynomials E µ (x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials J µ (x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the non-symmetric Macdonald polynomials.
متن کاملA Combinatorial Formula for Non-symmetric Macdonald Polynomials
We give a combinatorial formula for the non-symmetric Macdonald polynomials Eμ(x; q, t). The formula generalizes our previous combinatorial interpretation of the integral form symmetric Macdonald polynomials Jμ(x; q, t). We prove the new formula by verifying that it satisfies a recurrence, due to Knop and Sahi, that characterizes the non-symmetric Macdonald polynomials.
متن کاملApplications of Macdonald Polynomials
s for Talks Speaker: Nick Loehr (Virginia Tech, USA) (talk describes joint work with Jim Haglund and Mark Haiman) Title: Symmetric and Non-symmetric Macdonald Polynomials Abstract: Macdonald polynomials have played a central role in symmetric function theory ever since their introduction by Ian Macdonald in 1988. The original algebraic definitions of these polynomials are very nonexplicit and d...
متن کاملCombinatorial theory of Macdonald polynomials I: proof of Haglund's formula.
Haglund recently proposed a combinatorial interpretation of the modified Macdonald polynomials H(mu). We give a combinatorial proof of this conjecture, which establishes the existence and integrality of H(mu). As corollaries, we obtain the cocharge formula of Lascoux and Schutzenberger for Hall-Littlewood polynomials, a formula of Sahi and Knop for Jack's symmetric functions, a generalization o...
متن کامل